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Abstract 

 
The spectral graph wavelet transform (SGWT) has recently been developed to compute wavelet 
transforms of functions defined on non-Euclidean spaces such as graphs. By capitalizing on the 
established framework of the SGWT, we adopt a fast and efficient computation of a discretized Laplace-
Beltrami (LB) operator that allows its extension from arbitrary graphs to differentiable and closed 2-D 
manifolds (smooth surfaces embedded in the 3-D Euclidean space). This particular class of manifolds are 
widely used in bio imaging to characterize the morphology of cells, tissues, and organs. They are often 
discretized into triangular meshes, providing additional geometric information apart from simple nodes 
and weighted connections in graphs. 
Keywords: Hippocampal shape, Laplace-Beltrami operator, signal processing on surfaces, two-
dimensional (2-D) manifold 
 

1 INTRODUCTION 
 In comparison with the SGWT, the wavelet bases constructed with the LB operator are spatially 
localized with a more uniform “spread” with respect to underlying curvature of the surface. In our 
experiments, we first use synthetic data to show that traditional applications of wavelets in smoothing and 
edge detection can be done using the wavelet bases constructed with the LB operator. Second, we show 
that multi-resolution capabilities of the proposed framework are applicable in the classification of 
Alzheimer's patients with normal subjects using hippocampal shapes. 
 WAVELET analysis has been applied widely over a variety of cross-disciplinary applications, 
and has achieved considerable success, particularly in signal processing, data compression, and pattern 
recognition problems With the progressive collection of large network datasets, such as social networks 
and brain networks, and the development of statistical techniques for on-Euclidean spaces, the study of 
wavelet analysis in these irregular spaces hopes to exploit the parsimonious and multi-resolution 
capabilities of the classical wavelet transform, providing a more compact representation of large datasets 
and focused analyses of complex networks at different levels of detail. In particular, several extensions of 
the wavelet transform  defines formally the construction of wavelets on smooth, compact, differentiable 
manifolds—an important class of manifolds widely used in mathematical models of bio imaging and its 
related statistical analyses. Thus, to actually verify essential self-adjointness of a differential operator, one 
typically has to first solve a PDE (such as the wave, Schrödinger, heat, or Helmholtz equation) by some 
non-spectral method (e.g. by a contraction mapping argument, or a perturbation argument based on an 
operator already known to be essentially self-adjoint). 
 Once one can solve one of the PDEs, then one can apply one of the known converse spectral 
theorems to obtain essential self-adjointness, and then by the forward spectral theorem one can then solve 
all the other PDEs as well. But there is no getting out of that first step, which requires some input 
(typically of an ODE, PDE, or geometric nature) that is external to what abstract spectral theory can 
provide. For instance, if one wants to establish essential self-adjointness of the Laplace-Beltrami operator 
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{L = -\Delta_g} on a smooth Riemannian manifold {(M,g)} (using {C^\infty_c(M)} as the domain 
space), it turns out (under reasonable regularity hypotheses) that essential self-adjointness is equivalent to 
geodesic completeness of the manifold, which is a global ODE condition rather than a local one: one 
needs geodesics to continue indefinitely in order to be able to (unitarily) solve PDEs such as the wave 
equation, which in turn leads to essential self-adjointness. (Note that the domains {(0,1)} and 
{(0,+\infty)} in the previous examples were not geodesically complete.) For this reason, essential self-
adjointness of a differential operator is sometimes referred to as quantum completeness (with the 
completeness of the associated Hamilton-Jacobi flow then being the analogous classical completeness). 
 In these notes, I wanted to record (mostly for my own benefit) the forward and converse spectral 
theorems, and to verify essential self-adjointness of the Laplace-Beltrami operator on geodesically 
complete manifolds. This is extremely standard analysis (covered, for instance, in the texts of Reed and 
Simon), but I wanted to write it down myself to make sure that I really understood this foundational 
material properly. spectral shape analysis relies on the spectrum (eigenvalues and/or eigenfunctions) of 
the Laplace–Beltrami operator to compare and analyze geometric shapes. Since the spectrum of the 
Laplace–Beltrami operator is invariant under isometries, it is well suited for the analysis or retrieval of 
non-rigid shapes, i.e. bendable objects such as humans, animals, plants, etc.  
 The solutions are the eigenfunctions \phi_i (modes) and corresponding eigenvalues \lambda_i, 
representing a diverging sequence of positive real numbers. The first eigenvalue is zero for closed 
domains or when using the Neumann boundary condition. For some shapes, the spectrum can be 
computed analytically (e.g. rectangle, flat torus, cylinder, disk or sphere). For the sphere, for example, the 
eigenfunctions are the spherical harmonics. 
 The most important properties of the eigenvalues and eigenfunctions are that they are isometry 
invariants. In other words, if the shape is not stretched (e.g. a sheet of paper bent into the third 
dimension), the spectral values will not change. Bendable objects, like animals, plants and humans, can 
move into different body postures with only minimal stretching at the joints. The resulting shapes are 
called near-isometric and can be compared using spectral shape analysis. However, the isometric 
deformation of surfaces in 3D in the strict sense are rigid transformations. To characterize the actual 
deformation undergoing for the interest of nonrigid shape analysis, smooth deformations are introduced 
as an alternative family of deformation to isometry, where eigenvalues are allowed to perturb with finite 
error bounds. 
1.1 Review On The Spectral Graph Wavelet Transform 

Wavelets are basis functions that are scaled and shifted variants of a mother wavelet , defined 
over the continuous domain of an admissible function. For instance, a “mother” wavelet , defined over 
continuous time, is translated times and scaled times, to produce the th basis, bearing the general form (1) 
For any given signal , the wavelet coefficient , at scale and location , is denoted as and constructed with 
an inner product (2) Consider now a topologically complex domain, , which, in general, may not be 
Euclidean. In the SGWT [4], a given function is defined on the vertices of a weighted graph , where is a 
set of vertices, is a set of edges, and , or an assignment of one positive weight for every edge. A graph 
Laplacian operator is defined as, where and are the degree and adjacency matrices of , respectively. Since 
is real and symmetric, it has a complete set of orthonormal eigenvectors , for , with associated 
eigenvalues , such that (3) The graph Fourier transform of is then defined by       (4) As each vertex on the 
graph is discrete, there is no natural way to define a scaled wavelet basis . This problem was 
circumvented by working in a spectral graph domain, where a wavelet-generating kernel , analogous to a 
band-pass filter , was shifted along the spectrum. As the band pass filter journeys up from the low to the 
high frequency bands, the “spread” of the wavelet bases becomes increasingly localized on the graph 
domain. In [4], the wavelet basis at the given location and scale, is defined as (5) For a function defined 
on the graph, its corresponding wavelet coefficient at that particular scale, , and location is then computed 
with the inner product (6) The low frequency content of the graph, i.e., when is close to 0, is captured 
separately with another real-valued function, that satisfies the conditions and as . The basis constructed 
from is analogous to the scaling function in the set-up of a classical wavelet transform. 
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1.1.1 Discretization 
 Geometric shapes are often represented as 2D curved surfaces, 2D surface meshes (usually 
triangle meshes) or 3D solid objects (e.g. using voxels or tetrahedra meshes). The Helmholtz equation can 
be solved for all these cases. If a boundary exists, e.g. a square, or the volume of any 3D geometric shape, 
boundary conditions need to be specified. 
 Several discretizations of the Laplace operator exist (see Discrete Laplace operator) for the 
different types of geometry representations. Many of these operators do not approximate well the 
underlying continuous operator. 
1.1.2 Global point signature (GPS) 
 The global point signature[6] at a point x is a vector of scaled eigenfunctions of the Laplace–
Beltrami operator computed at x (i.e. the spectral embedding of the shape). The GPS is a global feature in 
the sense that it cannot be used for partial shape matching. The heat kernel signature makes use of the 
eigen-decomposition of the heat kernel: 
h_t(x,y) = \sum_{i=0}^\infty \exp(-\lambda_i t) \phi_i(x) \phi_i(y). 
For each point on the surface the diagonal of the heat kernel h_t(x,x) is sampled at specific time values t_j 
and yields a local signature that can also be used for partial matching or symmetry detection. 
1.1.3 Spectral Matching 
 The spectral decomposition of the graph Laplacian associated with complex shapes (see Discrete 
Laplace operator) provides eigenfunctions (modes) which are invariant to isometries. Each vertex on the 
shape could be uniquely represented with a combinations of the eigenmodal values at each point, 
sometimes called spectral coordinates: 
s(x) = \left(\phi_1(x), \phi_2(x), ..., \phi_N(x)\right)   for vertex x. 
 Spectral matching consists of establishing the point correspondences by pairing vertices on 
different shapes that have the most similar spectral coordinates. Early work [8][9][10] focused on sparse 
correspondences for stereoscopy.  
2 LITERATURE SURVEY 
Wavelet Based Multi-Scale Shape Features On Arbitrary Surfaces For Cortical Thickness Discrimination 
 Hammond recently developed the spectral graph wavelet transform (SGWT) that is based on the 
graph-Fourier transform. It is implemented through the graph Laplacian by first constructing a surrogate 
spectral domain and then introducing a wavelet generating kernel in this spectral domain for the purpose 
of the spectral localization. It has found applications in many disciplines, particularly in neuroimaging 
research. For instance, multi-scale wavelet coefficients generated from the SGWT were concatenated and 
employed as high-dimensional projections of signals defined on arbitrary graph domains. This has been 
shown to improve statistical power for detecting subtle differences in cortical thickness between normal 
subjects and patients with Alzheimer's disease. In addition, the SGWT construction and its desirable 
properties can be varied through a choice of wavelet-generating kernels. For instance, a kernel, analogous 
to Meyer wavelets, builds an energy-conserving Parseval frame. As shown in [6], this kernel captures 
coherent brain activity of fMRI data with varying efficiencies, dependent on how well the wavelet 
transform was suited to the specific brain simulation. In addition, SGWT was also used as a segmentation 
scheme for 3-D shapes at different scales of a wavelet generating kernel]. 
Wavelet Transform On Manifolds: Old And New Approaches 

Morphometric studies of brain structures have classically been based on volume measurements. 
More recently, shape studies of gray matter brain structures have become popular. Methodologies for 
shape comparison may be divided into global and local shape analysis approaches. While local shape 
comparisons [1], [2], [3] yield powerful, spatially localized results that are relatively straightforward to 
interpret, they usually rely on a number of preprocessing steps. In particular, one-to-one correspondences 
between surfaces need to be established, shapes need to be registered and resampled, possibly influencing 
shape comparisons. While global shape comparison cannot spatially localize shape changes, global 
approaches may be formulated with a significantly reduced number of assumptions and preprocessing 
steps, staying as true as possible to the original data. 
Global Medical Shape Analysis Using The Volumetric Laplace Spectrum 

In particular, the paper focuses on the volumetric Laplace spectrum of three-dimensional solids. 
Previous approaches for global shape analysis in medical imaging include the use of invariant moments 
[8], the shape index [9], and global shape descriptors based on spherical harmonics [10]. The proposed 
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methodology based on the Laplace-Beltrami spectrum differs in the following ways from these previous 
approaches: - It works directly for any Riemannian manifold, whereas spherical harmonics based methods 
require spherical representations, and invariant moments do not easily generalize to arbitrary Riemannian 
manifolds. It may be used to analyze surface, solids, non-spherical objects, etc. in different 
representations. - Only minimal preprocessing of the data is required. Three dimensional volume data 
may be represented by its boundary surface, separating the object interior from its exterior or by the 
volume itself (a volumetric, region-based approach).  

2.1 PROBLEM DEFINITION 
 While the SGWT is attractive, its construction based on the graph Laplacian, captures only 
information such as the nodes and edges of an arbitrary graph. However, the geometry of surfaces in 
many bio imaging applications, such as 3-D heart models, blood vessels, and brain cortical surfaces, is 
important for understanding biological processes. It is hence essential to incorporate geometric 
information of these biological surfaces into the wavelet construction. In this paper, we are primarily 
interested in extending the SGWT developed by onto differentiable, compact and boundary-less two-
manifolds (smooth and closed surfaces embedded in the 3-D Euclidean space). In general, for the ease of 
computation, these surfaces are often discretized into triangular meshes, allowing their interpretation as 
graphs with discrete nodes and edges. By capitalizing on the established framework of the SGWT, we 
hope to replace the graph Laplacian with a discretized Laplace-Beltrami operator that captures geometric 
information such as the intrinsic curvature of the underlying surfaces in addition to the nodes and edges 
3 PROPOSED SYSTEM 
3.1 Methodology  
 Analogous to the Eigen functions of the graph Laplacian, which are used to construct the spectral 
domain of an arbitrary graph, the Eigen functions of the Laplace-Beltrami operator can be used to define 
the spectral domain of an arbitrary 2-D manifold surface. These Eigen functions form an informative set 
of functions that incorporate the intrinsic geometry of the manifold with different degrees of sensitivity 
along the spectrum. They are widely used in many applications, such as signal processing on manifolds, 
shape segmentation and classification. For instance, Eigen functions of the Laplace-Beltrami operator, 
which were used to smooth functional signals on brain cortical surfaces, were also employed as global 
shape descriptors to capture the differences in caudate shapes between controls and schizotypal patients. 
Geometric information incorporated in the Eigen functions is also useful in constructing other operators, 
such as heat kernel for smoothing functions defined over the two-manifolds. Following the wide 
application of the Laplace-Beltrami operator in the medical and computer vision fields, robust numerical 
methods of computing a discretized Laplace-Beltrami operator have attracted a fair amount of attention. 
In this paper, we constructed the Laplace-Beltrami operator as a discrete geometric operator  so as to 
make use of the fast polynomial approximation developed in . Effects of user-defined parameters used in 
the framework will also be investigated. In Section IV, we demonstrate the advantages of our spectral 
wavelets over the SGWT and apply the wavelet transform, first on simulated shapes, and then on real data 
such as the cortical thickness of the brain. Lastly, we show an application of the spectral wavelet 
transform wherein the classification rates between control and Alzheimer's patients, using hippocampal 
shapes, can be improved. 
3.1.1 Mathematical Model 
 Wavelets are basis functions that are scaled and shifted variants of a mother wavelet , defined 
over the continuous domain of an admissible function, . For instance, a “mother” wavelet , defined over 
continuous time, is translated times and scaled times, to produce the th basis, 
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For any given signal , the wavelet coefficient , at scale and location , is denoted as and constructed with 

an inner product                                   

Consider now a topologically complex domain, ,which, in general, may not be  Euclidean. In the SGWT 
[4], a given function is defined on the vertices of a weighted graph ,where is a set of vertices, is a set of 
edges, and , or an assignment of one positive weight for every edge. A graph Laplacian operator is 
defined as ,where and are the degree and adjacency matrices of, respectively. As the band pass filter 
journeys up from the low to the high frequency bands, the “spread” of the wavelet bases becomes 
increasingly localized on the graph domain. In [4], the wavelet basis at the given location and scale , ,is 
defined as 

 

The low frequency content of the graph, i.e., when is close to 0, is captured separately with another real-
valued function , that satisfies the conditions and as . The basis constructed from is analogous to the 
scaling function in the set-up of a classical wavelet transform.  

 Coefficients of a cubic polynomial are determined by the continuity constraints and . The 
discretized wavelet scales, which we will now denote as ,have to be determined from the upper bound of 
the spectrum of the Laplace-Beltrami operator. The minimum and maximum scales and are computed as 
and, and the remaining are spaced logarithmically in between. Note that is a user-defined parameter and 
determines the lower bound of the spectrum. We will discuss further in Section III-D1.By sharing the 
same wavelet-generating kernel as the spectral graph wavelets, we are always assured of spectral 
localization, as that has been specified within the construction of .  

3.2 Implementation 

 1) Choosing : The construction of the wavelet basis is artificially orchestrated by the design of 
kernel , which in turn, moves along the spectral domain of the underlying structure as scale changes. By 
spacing out the scales along the spectrum, we control the size of the “spread” of the wavelet bases, which 
is often dependent on the nature of our application. For instance, a large corresponds to a large “spread” 
and acts inadvertently as a smoothing function, while a small detects edge or high frequency differences 
in the function defined on the surface. Since we fix the upper bound of the spectrum at, the user-defined 
parameter determines the lower bound, or essentially, the area of influence of at the largest ., the effects 
of on the “spread “of could be seen from a range of 2000 to 50 000, at a fixed scale . 

 2) Choosing : Due to the computational intensity of the eigenvalues and Eigen functions for 
densely-sampled surfaces, we employ the approximation of using Chebyshev polynomials[4]. This 
requires us to determine another free parameter that specifies the number of polynomial terms in the 
Chebyshev expansion. The sequence of Chebyshev polynomials, used Effects of the change of on the 
“spread” of the wavelet basis. increases from left to right. Triangular mesh has 81 920 faces and 40 962 
vertices. These panels show the fifth wavelet basis , .Effects of on wavelet bases. wavelet basis generated 
based on the Laplace-Beltrami operator at three scales (decreasing from left to right along each row) at a 
fixed location. From top to bottom row, the user defined parameter increases from 20 to 100 to 500, 
.frequently in numerical analyses, can be defined recursively upto a degree . Thus one needs suitable 
techniques for analyzing such data. In the spherical case, the Fourier transform amounts to an expansion 
in spherical harmonics, whose support is the whole sphere. Fourier analysis on the sphere is thus global 
and cumbersome. Therefore many different methods have been proposed to replace it with some sort of 
wavelet analysis. 
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Implementation of Spectral Wavelet Transform 

Given , we want to compute . 

Step 1: Initialization 

Step 2: Compute the Laplace-Beltrami operator matrix 

Step 3: Compute 

Step 4:  Specify the wavelet generating kernel operator . 

Step 5: Implement the spectral wavelet transform in (23) to obtain . For dense meshes, the polynomial 
approximation scheme in [4] is recommended 

3.3 Expected Result 

 This study explains the various characteristics and properties of the aluminium alloy. By means 
the literature survey it is well clear that the aluminium alloy is best suitable for its properties. This project 
describes the latest and strongest alloy automobile leaf spring. The new alloy, containing 90% aluminium 
& 7% zinc is an inexpensive substitute for steel.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

Figure 3.1: Different Sampling Densities 
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While this transformation has biological significance, as shown in the classification experiment between 
the Alzheimer's and normal subjects, the high-dimensionality of the corresponding wavelet coefficients 
could result in inconveniences for data storage or statistical analyses. The development of a sparse 
representation from  dictionary of wavelet bases could be helpful in defining a low-dimensional 
representation of functions defined on manifolds, without resorting to common linear data reduction 
methods such as the PCA or multi-dimensional scaling. 

 

4 RESULT 

 
 
 

Figure 4.1: Input Image 

 
 
 
 

 
 

Figure 4.2: Normal Brain Image 

5 CONCLUSION 

  We now show that the wavelet bases generated from the discretized Laplace-Beltrami operators  
are localized in the spatial domain. To prove this, we mimic closely the proof for the spatial localization 



  ISSN: 2455-5797                  International Journal of Innovative Works in Engineering and Technology (IJIWET)  
 

 

 147 [Mohan Jisnu et al. , Vol. (2), No. (2): Apl 2016 ]                                                                 
Page 

property of the SGWT . First, we will describe a new corollary (Corollary 2) to link the discretized 
Laplace-Beltrami with the graph Laplacian, which is needed in the proof of Corollary 1.Corollary 2: Let 
be the discretized Laplace-Beltrami operator of a differentiable, closed manifold surface, and computed 
based on (19). Let be an integer such that for any pair of vertices and ,,where is the total number of rings 
containing with respect ,and is an index numbering from 1 to .If ,where is an integer, then .There are 
many ways to define a discretized Laplace-Beltrami (LB) operator, and it is not clear if all such schemes 
could apply to the given formulation of spectral wavelets. With corollary 2,we demonstrated the 
important similarity established between the graph Laplacian and the discretized Laplace-Beltrami 
operator detailed in Section III-A. The minimum number of edges of any path connecting points and in a 
graph would be identical to ,where , whenever the same set of one-ring neighbors is used for both 
Laplacians, i.e., if edges are required to join two points, one of the points would then be in the -ring of the 
other.  

 In the future work the Feature kernel regression and diffusion smoothing share identical FEM 
discretization. The flexibility of the parametric model enabled us to establish the mathematical 
equivalence of kernel regression, diffusion smoothing and diffusion wavelets. 
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