TECHNIQUES FOR LUNG NODULE EXTRACTION IN MEDICAL IMAGES: A REVIEW
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ABSTRACT:
The classification and identification of the disease in medical images were useful for computer aided diagnosis, medical research, radiotherapy, evaluations of surgery and biomedical applications. The accurate segmentation of lung lesions from computed tomography (CT) images is of great importance for image-driven lung cancer study and screening processes. Due to the heterogeneity of lung lesions and the presence of similar various pictorial characteristics between lesions and their surrounds make it difficult for robust segmentation of lesions in medical images. This work provides a comprehensive review of the existing automatic techniques of identifying pulmonary nodules present in thorax CT scans. In this work, the information regarding size of lesions, characterization and 2D or 3D techniques is also fused. All the automated lung lesion extraction schemes roughly involve some common procedures including image acquisition, pre-processing, lung or lesion segmentation, feature extraction and classification and reduction of false positives. The techniques developed to perform all the intermediate procedures are briefly described. This work presents the comparison of the recent techniques in terms of the standard parameters employed by the researchers. 
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INTRODUCTION:
Cancer is a most important public fitness problem in the world. Lung cancer is currently the principal cause of cancer related deaths worldwide and is the second leading cause of death in terms of the report collected from the World Health Organization(WHO) [2]. In developed countries, patients detected with this type of pathology have a survival rate of five-years between 10 and 16% [1]. However, in cases where lung tumour is diagnosed in early stages, the five-years survival rate increases to 70%. Sex differences in lung cancer trends to reflect historic differences in use of tobacco. Women took up smoking and at older ages than men, but were slower to quit, including recent rises in smoking occurrence in some birth cohorts [115], [116]. There is potential for lung cancer to be identified at an earlier stage using screening with low-dose computed tomography, which has been shown for reducing lung cancer mortality by up to 20% among former and current and smokers with a smoking history of 30 or more pack-years [119].
Treatment therapy monitoring and lung lesion analysis using CT images are important procedures for early lung cancer treatment and survival of patients. In these strategies, accurate lung nodule segmentation is necessary that can affect the analysis results. Specifically, given fact of growing volumes of clinical data, developed a data-driven segmentation model is of great clinical importance to avoid tedious manual processing and reduce inter-observer variability [138]. Despite development of techniques for lung nodule segmentation in current years [30], [138], attaining accurate segmentation performance continues to require attention due to the heterogeneity of lung nodules on CT images. The occurrence of similar visual and pictorial characteristics between nodules and their surroundings poses a technical challenge for developing robust segmentation models.
Since the introduction of helical multi slice technology CT has become the most sensitive imaging modality for the exposure of small lung nodules [12]. More recently, one of the hopes to change the scenario of late diagnosis has been conducted by monitoring programs with low-dose CT, particularly applied to risk groups such as smokers [119].
After the identification of a pulmonary nodule through CT, the surgeon is asked about its malignancy. During the examination, the radiologist must list the diagnostic possibilities and offer a result based on the analysis of the nodule morphology and clinical context. This diagnosis may have no treatment, no follow up, or may recommend surgical resection. However, it should always seek a cost benefit trade-off analysis of treatment strategies by not allowing a potentially malignant nodule to continue evolving, by limiting unnecessary invasive investigations and radiation from repeated CT scans as well as containing patient anxiety. The chosen strategy should follow traditional recommendations and incorporate the recent extensive and fast changing research found in the literature. The nodule imaging features and the role of the radiologist are essential to the definition of this diagnosis [49] and [23].
A lung nodule is a small mass of tissues in the lung. It appears as round, white shadows on a computerized tomography scan or a chest X-ray. Typically, lung nodules are approximately 0.2 inch to 1.2 inches in size. A bigger lung nodule of up to 30 millimetres is more likely to be cancerous than a smaller lung nodule.
The term “micronodule” is reserved for opacities less than 3 mm in diameter and the term “mass” is used for opacities which are greater than 30 mm. The accuracy in calculating the nodule diameter is critical because the nodule size is related to malignancy. Lung nodules are categorized as benign lung nodules, nodules from inflammation, and fibrosis and malignant lung nodules. A benign nodule usually does not spread to other areas. However, their presence, especially if they are big, may cause health problems. There are two types of benign nodules which include granulomas and hamartomas. Lung nodules caused by infections are classified as bacterial infections. Conditions that lead to inflammation and fibrosis can make one susceptible to benign lung nodules.
A study of the existing journals on pulmonary nodule detection exposes that a proper effort to categorize the existing nodule detection methods based on their operation principles has not been made. This work formulates the generic structure for lung nodule detection scheme that can be used to categorise majority of the previous methods. It consists of a few mechanisms which includes acquisition, pre-processing, lung segmentation, nodule detection, and false positives reduction. Various algorithms have been employed to realise each component in different systems. These algorithms are revised in this paper. In addition, this work provides a comparison of the performance of the existing methods making it easier for the reader to establish an understanding of the applicability of the studied approaches.

REVIEW OF EXISTING NODULE DETECTION METHODS:

Nodules are the principal cause of cancer; however, the timely detection of these nodules can greatly aid in improving the survival rate of cancer patients. Nodules are usually identified manually by radiologists. However, discriminating malignant nodules from benign nodules by visual analysis varies from radiologist to radiologist. The presence of calcification or fat is normally an indicator of benign nodules, whereas features such as irregular margins and assorted attenuation have been associated with malignant nodules. Due to inter-reader variability, some genuine nodules may sometimes be misclassified, particularly when the huge amount of available CT scan data is put into consideration. Therefore, CAD offers a second opinion that may validate radiologists’ assessment.
Solid nodules are easier to detect due to harmonized intensity. But, due to nonuniform interior structure subsolid nodule detection posture challenge to researchers, that is why little research has been witnessed that particularly focuses on subsolid nodule detection.
Figure 1 shows the General Structure of Lung Nodule Extraction System in CT Images. The process includes CT scan image acquisition, pre-processing, lung or candidate nodule ROI segmentation, feature extraction, feature vector size reduction and classification or false positive reduction.
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Fig. 1. General Structure of Lung Nodule Extraction System
LUNG IMAGE ACQUISITION:

 Image acquisition is the process of retrieving image from an imaging modality. Several imaging modalities exist for example, radiographs, Magnetic Resonance Images (MRI) and CT scans. CT scan images are better to show contrast difference among nodules and adjacent structures. Few publicly available databases aid as a reference source to facilitate the development, training and assessment of CAD algorithms. They contain thorax scans with marked annotated lesions. Some of the publicly available databases are Early Lung Cancer Action Program (ELCAP) Public Lung Image Database, ELCAP Public Lung Database to Address Drug Response, Lung Image Database Consortium (LIDC) in National Imaging Archive, Medical Image Database, and Lung Image Database Consortium image collection (LIDC-IDRI). Various researchers have acquired databases of research institutes and private hospitals. The nodule detection algorithms are evaluated on the public databases and private databases collected from the private sectors.
PRE-PROCESSING:

Pre-processing aims to increase the visualization of the CT scan images, thereby reducing the noise and other artefacts introduced during image acquisition process probably due to CT scan machine resolution or other environmental factors. Semi-automated approaches entail cropping annotated image area. One such approach cropped 31x31 pixel area with annotated centroid in the middle. Nascimento used histogram Equalization to enhance the contrast of the images. Chip level; a user defined maximum is imposed on the height of local histogram which rules out the possibility of over-enhancement of noise simultaneously minimizing edge shadowing effect. To improve image contrast and deal with noise, the author combined CLAHE algorithm with Wiener filter. Ashwin [80] adopted CLAHE algorithm to pre-process the images.
Tan et al., [131] used isotropic re-sampling of lung images, while Messay et al., [79] changed orientation of slices and down sampled them so to make the slice spacing equal to that of training data followed by Local Contrast Enhancement. Cascio et al., [34] proposed isotropic interpolation in pre-processing step to convert voxels into 3D Cartesian coordinate grids with uniform 3D spatial resolution. All the slices were rescaled to 221x221 size employing Lanczos interpolation; the resized matrix was reproduced thrice to reproduce RGB image as used by Over Feat feature extractor in Ciompis method. Gaussian and Gabor filters are also employed for image enhancement. Gabor function is a bandpass filter which improves contrast among nodule and surrounding areas. Quadratic Enhancement was applied by Filho et al., [133] to selectively enhance contrast of the images. This enhances noise content as well, which was eliminated by Gaussian filter and median filter.




LUNG SEGMENTATION:

Lung Segmentation is the process of classifying the lung lobe region and eliminating the rest of the image (Fig. 2). Segmentation of the lung is frequently performed as a significant pre-processing step for quantitative analysis of chest CT imaging. Segmentation is used for partitioning the input image into multiple segments. Segmenting lungs from adjacent structures significantly reduces the execution time of lung nodule detection schemes and help improve its efficiency. It plays a vital role in pulmonary nodule detection by increasing the accuracy, reliability, precision, and decreasing computational cost of detection.
Segmentation is the process which is important for Lung Nodule classification and detection. For example, juxta-pleural nodules have an intensity like that of lung wall; therefore, they are difficult to distinguish using intensity values only. Similarly, non-solid nodules such as ground-glass opacity (GGO) possess a challenge since a simple morphological action is not suitable due to low intensity contrast in CT data [61].
[image: ]
(a)            		(b)
Fig. 2. Sample segmented lung image: (a) original image and (b) segmented image

Fig.3.  2D based segmentation methods

Figure 3 shows the overview of 2D based segmentation methods. Various semi-automatic and automatic approaches have been presented for lung or nodule segmentation. Semi-automated procedures were primarily formulated to obtain candidate nodule ROI from observations by experts.
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Fig 4. 3D-based segmentation techniques for lung CT images 

Figure 4 shows the overview of 3D based segmentation techniques used for lung CT images. Great contrast exists among lungs and adjacent organs in the thorax CT scan, segmenting lungs by using intensity based approaches were initially proposed to segment lung parenchyma ([33], [34], [35]). Intensity-based methods using mathematical morphological operation [136], [79] and region growing [61], [138] have been considered. Energy optimization techniques including level set [30] and graph cut [82] were also researched for pulmonary nodule segmentation. Though, the robustness is still challenging particularly for segmenting juxta-pleural nodules. For example, in morphology-based methods, the morphological template size is difficult to generalize with nodules of various diameters [138]. Sophisticated methods can process juxta-pleural nodules by applying a shape constraint [30], [124] or depend on user interactive parameter settings [79]. However, it may not be suitable for irregular shaped nodules where the shape hypothesis can be violated. In addition, user interactive constraints such as well centralized seed point [79] or stroke are tough to tune for different types of nodules. Fan Zhang [129] utilises the thresholding segmentation. The limitations of directly applying raw intensity value for segmentation recommend the need of innovative solutions for capturing high-level, nodule-sensitive features from CT volumes.
Authors [47], [54] proposed vector quantization method to segment lung; the method envisaged detecting and segmenting nodules simultaneously and addressed the weakness of global thresholding method. The authors [27], [39] presented wave-front simulation to refine the results achieved using Region Growing algorithm. Connected Component Labelling and contour correction based on chain code analysis was applied [28] to extract and refine lung area. Quick Shift clustering algorithm [32] has also been applied to divide the data into clusters. Zhang [129] and Fan et. al. [62] proposed adaptive patch based image representation to cluster lung area, where Super pixel labelling assigns unique labels to foreground and background labels. Rolling Ball Algorithm was used [25] to refine results of initial lung extraction so that the nodules are not erroneously missed during segmentation stage. Watershed transform [37], a region-based segmentation method has been employed for lung segmentation. Followed by watershed transform [37], used median filter and morphological operations to remove post-segmentation noise. Author [132] combined thresholding and Marker Controlled Watershed Transform to obtain better results.

FEATURE EXTRACTION 

Feature extraction deals with the image intensity, texture, and gradient. For feature extraction process MR8(Maximum Response), LBP (Local Binary Patterns), MHOG (Multi orientation Histogram of Oriented Gradients) and Sift descriptor are used. Four class SVM (Support Vector Machine) is used for feature extraction process. Generally, 128-dimensional feature set is used for the computational process. 
Template based models have been employed during the recent years. Many 2D schemes neglect the nodules attached to vessels, hence decreasing the number of true positives and failing the classification performance of CAD system. 3D schemes have an edge over 2D schemes in that they better identify the nodules attached to vessels. Farag et al. [30] extracted texture features using Daugman coding and SIFT descriptor. Tsallis and Shannon entropy measurements were used by Santos et al. [12] to extract texture information. True nodules possess high concentration of gradient vector as they grow from centre to surrounding, hence, Cao et. al. [81] used gradient distribution features to discriminate nodules from surrounding structures. Intensity based features mean, contrast, entropy and standard deviation have been most popular types of features for candidate nodule detection. Farag [30] used SURF (Speeded-Up Robust Features) algorithms to extract texture features; this approach is better than SIFT in terms of execution time. Authors in [47], [48] employed dot enhancement filter. Hessian filter and iris filter are used to highlight spherical objects and suppress vessel like structures. 
Jacobs et. al. [113] used comprehensive feature set including texture, shape, wavelet features and Local binary patterns. Combination of geometric and context features such as elongation and Cube Compactness were used in [28] and [14]. Cascio et al. [34] proposed intensity features in conjunction with 3D mass-spring model [12]. Texture and shape features including homogeneity, momentum, spherical disproportion, spherical density, weighted radial distance, Boyce-Clark radial shape index, density of solitary pulmonary nodules, presence of spicules and caverns have been described by several authors [16], [25], [44], [27], [6], [38]. Lee [27] used Fourier descriptors. Orozco [121] used Daube chis wavelet features. 
FEATURE REDUCTION
[bookmark: _GoBack]Use of numerous features result in overfitting of classifier. Feature reduction is done to utilize appropriate features to provide optimum classification results, and enhancing the computational efficiency of CAD systems. Lee [27] achieved feature reduction via ensemble-learning and used GA ensemble to analyse the features.  Wu et al. [19] used LASSO (Least Absolute Shrinkage and Selection Operator). 

CLASSIFICATION

Classification is final yet certainly the most significant phase in nodule detection process. The feature extraction procedure yields candidates that are fed to the classifier; the classifier finally categorizes them as either nodules or non-nodules. Classification stage trains the classifier to make them learn features computed using training data and classify the input candidates or test data as nodule or non-nodule. Feature extraction phase generates several candidates that have likelihood of being recognized correctly or not. 

Fig. 5. An overview of Nodule classification methods
Figure 5 shows the overview of Nodule classification methods. Variants of neural network classifier are a prominent choice of researchers. BP Neural Network was used in another scheme [19]. Artificial Neural Networks were used [12], [17], [69] for false positive reduction. Kuruvilla [125] and Cerello [29] used feed forward neural network for classifying the candidates into nodules and non-nodules. Nearest Neighbour Classifier [51] and k-nearest neighbour classifier [35] have also been used in the classification approaches.
Few researchers in [59], [70], [8], [71], [23], [10], [41] used Support Vector Machine. Particle Swarm optimization was used by Cao et. al [81] to optimize Cost Sensitive SVM. Zhu [39] used SVM with Gaussian kernel function and Zhang used [129] polynomial kernel. The authors in [15] and [44] used RBF kernel functions. Wang [22] combined Minimum Within-Class Scatter SVM with higher order tensor technology to improve classification accuracy.

Farag et al., [30] created templates using AAM template matching approach and combined rotation variations in template matching which improved classification results. Few authors [37] and [16] used RBF, polynomial function and Minkowski distance function as kernel functions. Assefa invented templates possessing Gaussian-like intensity distribution in which circular templates were used for identifying nodules inside the lung region and semi-circular templates for nodules at lung border. 
The computational classifiers that are used for the reduction of false positives are indicated in Table 3.
	Authors
	Year
	Classifier used

	Ashwin et al. [80]
	2012
	Artificial neural networks (ANN)

	Wang et al. [33]
	2013
	SVM

	El-Baz et al. [30]
	2013
	Bayesian supervised

	Gurcan et al. [105]
	2002
	Rule based

	Lin et al. [103]
	1996
	Artificial neural networks (ANN)

	Camarlinghi et al. [106]
	2012
	Feed Forward Neural Networks (FFNN)

	Bellotti et al. [104]
	2007
	Artificial neural networks (ANN)

	Suiyuan and Junfeng [37]
	2012
	Invariant moments

	Namin et al. [40]
	2010
	Fuzzy k-NN classifier

	Cascio et al. [34]
	2012
	Artificial neural networks (ANN)

	Armato III et al. [99]
	
	Linear discriminant analysis (LDA)

	Ozekes and Osman [45] 
	2008
	Feed forward neural networks (FFNN)

	Matsumoto et al. [43] 
	2008
	Rule based



Table 1: Computational classifiers used for the reduction of false positives 

	Authors

	Year
	Acquisition of data
	Pre-processing
	Lung Segmentation
	Nodule detection
	FP
reduction

	Santos et al. [12]
	2014
	Yes
	No
	Yes
	Yes
	Yes

	Badura and Pietka [26]
	2014
	Yes
	No
	Yes
	Yes
	Yes

	El-Baz et al. [30]
	2013
	Yes
	No
	Yes
	Yes
	Yes

	Choi and Choi [32]
	2014
	Yes
	No
	Yes
	Yes
	Yes

	Wang et al. [33]
	2013
	Yes
	No
	Yes
	Yes
	Yes

	Cascio et al. [34]
	2012
	Yes
	Yes
	Yes
	Yes
	Yes


Table 2: Processing stages included in each of the selected works.
The stages considered by each of the selected works for the automatic detection of lung nodules in lung CT images are indicated in Table 2.

PERFORMANCE MEASURES:
This section gives the comparison of the recent nodule detection schemes. The majority authors have used few common parameters for evaluating their schemes such as accuracy, sensitivity, specificity, and area under ROC curve. The information regarding type, number and size of nodules is also incorporated to facilitate the reader in better differentiating the techniques. Comparison of existing techniques and their performance is summarized in table 3 that shows the results in organized form. Tae [16] used 2D and 3D geometric, texture features along with SVM. They reported 95.28% sensitivity with 2.27 false positives/ scan and 97.61% accuracy. SVM classifier was used in the research works [4], [8], [25] [39]. Zhu et al. [39] utilized SVM and texture feature to discriminate malignant and benign nodules and accomplished AUC 0.844. Rodrigo [25] used histogram-based, geometric, gradient and spatial features along with SVM and obtained 95.21% accuracy, 84.84% sensitivity, and 96.15% specificity.
Orozco [121] used 61 scans (36 scans with cancerous nodules and 25 scans without nodules) for training and 45 (23 with cancerous nodules and 22 scans without nodules) for testing. The technique using Daubechis wavelet features results 82% accuracy, 90.9% sensitivity and 73.91% specificity. Nodules having diameter between 2 mm and 30 mm are correctly classified. Lin et al. [59] using fractal geometry and SVM gained 88.82% accuracy, 93.92% sensitivity, 82.9% specificity, and 0.9019 area under ROC curve. Roy [74] used combination of Fuzzy Inference System and SVM and shown 94.12% accuracy.
Song [32] achieved 97.9% recall, 82.7% precision and AUC 0.9705 using SVM and conditional random fields. Huang [71] used SVM together with fractional Brownian motion model to achieve accuracy of 83.11% and Area under ROC of 0.8437. Teramoto [83] used SVM and cylindrical nodule enhancement filter and spotted 80% nodules with 4.2FP/case. Authors claim to achieve detection speed being 4-36 times faster than the previous methods.
The sensitivity of the system can be given as:
	Sensitivity =          	(1)
where TP (true positive) is when the system gives a positive result for a sample that has disease, and FN (false negative) is when the system a gives an output as negative for a sample that has disease.
	Author
	Data
	2D/3D
	Classifier

	Nodule size
	Results

	Filho [133]
	140 exams from LIDCIDRI
	3D
	SVM with RBF
	3mm to 30 mm
	Sensitivity 85.91 specificity
97.7% and accuracy 97.55% 

	Tan
[131]
	LIDC 360 CT scans
	3D
	Phased Searching with NEAT
	Nodules with diameter greater than or equal to 3 mm
	Detection sensitivity of 83+9.7% 

	Keshani [124]
	63 scans including 8 clinical sets, 5 datasets from ANODE 50 sets by LIDC
	2D/ 3D
	SVM
	Solid, non-solid and cavitary nodules greater than 5mm
	Detection rate of 89% with 7.3
FP/scan

	Cao et. al [81]
	Private database, 165 CT scans containing 192 solid nodules, 5 datasets from ANODE
50 sets by LIDC
	3D
	Hybrid probabilistic sampling combined with diverse random subspace ensemble
	3 mm to 30 mm
	Sensitivity 83.17 %, G-mean
84.69% AUC 85.7%

	Choi
[32]
	Private database containing 165 CT scans with 192 nodules
	2D/ 3D
	Genetic Programming
based classifier
	3 mm to 30 mm
	5.45 FP rate/ scan and 94.1% sensitivity

	Lin et. al. [71]
	Private database 107 CT scans including 48 benign and 59 malignant
	
	SVM
	8.5mm both malignant and benign nodules
	Accuracy 88.82%, sensitivity 93.92%, specificity 82.9%, positive predictive value 87.3%, negative predictive value 90.2%, area under ROC curve 0.9019

	Messay
[79]
	LIDC database consisting of 84 CT scans containing 143 nodules 1.3 and 3.0 mm in size
	2D/ 3D
	Quadratic classifier and Fisher Linear Discriminant classifier
	3 mm to 30 mm Vascular nodules,
Pleural nodules
	Sensitivity 82.66% with average of 3FPs per scan/ case

	Wang
[33]
	Private database Test data contains 196 scans that consist of 8428 sections (108 nodules
	3D
	SVM 
	5mm-30 mm isolated,
attached to vessels and attached to pleura
	98.2% with 9. IFPs/scan, AUC
0.995

	Cascio [34]
	LIDC 84 scans and 148 nodules
	3D
	Double Threshold cut and neural network
	3 mm - 50 mm juxta-pleural nodules
	97.66% sensitivity with 6.1 FPs/case 
88% sensitivity with 2.5 FPs/ scan



Table 3. Comparison of existing techniques and their performance



CONCLUSION:

               This work gives an overview of the current and existing lung nodule extraction techniques used for CT images that may help researchers when choosing a given method. Certainly, lung analysis techniques have been improved over the last decade. However, there are issues to be solved such as innovating novel and improved techniques for contrast enhancement and selecting better criteria for performance evaluation is also required.
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