
ISSN:                                 International Journal of Innovative Works in Engineering and Technology (IJIWET) 

 

 

72 [Bala Suthan.V et al., Vol. (1), No. (2): Dec 2015] 

Auto-Scaling and Priority Based Scheduling for 
Improving Efficiency of Cloud System 

V.Bala Suthan1,  
M.E Scholar ( M.E Communication and Networking), Cape Institute of Technology 

1 Email: balasuthan@live.com 

 

 

Abstract: Cloud Computing become most popular nowadays because of its reliability, and available on 
demand with pay as you go manner. Maintaining Demand Satisfaction Ratio among various user 
without violating the SLA (Service Level Agreement) is very big challenge for cloud service providers. 
In this paper we present a sort of algorithms that will allocate resource along the user more efficiently 
depend up on their priority or class, to maintain the SLA. This help the cloud services provider to make 
their services available for both free and in paid manner by giving more priority to the paid user. Without 
violating the SLA of paid user the free user can access the cloud resources. This algorithm increases 
overall demand satisfaction ratio of cloud service by using Auto scaling algorithm. This method also 
support green computing by using the available resource more efficiently by placing the task adaptively 
among the server and make ideal server under sleep mode using wake on the LAN technology. 

Keywords: Cloud Computing, Auto Scaling, Green Computing, Virtualization.  
 

I. INTRODUCTION 

Cloud computing is a way of delivering computing as a service through network or Internet to the 
user. Cloud service provider provide various computing resource such as storage, Infrastructure, 
application etc. to the users. Cloud computing allow user to perform virtually any compute or data 
storage operations by scaling and provisioning necessary resource on demand on a pay as you go basis 
this made cloud computing most popular nowadays. Development of  smartphone devices and high 
speed mobile network allow various mobile user to use cloud to execute their complex and heavy weight 
computing task on cloud with their hand held mobile device or Tablet Pcs this is refer as MCC(Mobile 
Cloud Computing).  

Many cloud service provider also provide their service for free of cost. This efficiency of cloud 
and availability of various services make number of person using cloud to grow rapidly day by day. 
Normally cloud present an illusion that it has infinite capacity but in reality datacentres are having 
limited resources only. When large number of application attain its peak at the same time even cloud 
cannot satisfy some demand. So to serve the huge population of requests efficiently without violating 
their SLA (Service Level Agreement) is a very big challenge. To face this challenge cloud service 
provider should optimize their resource allocation to every user as well as reduce the usage cost and 
energy. To obtain this, this paper proposed a method that uses a sort of algorithm for scaling a 
scheduling the cloud application dynamically depend up on priority of users. This method optimize the 
resource available for priority or paid user while providing Best Effort service for the free users. If 
overall demand goes high this method can maintain the Demand satisfaction ratio of priority customers 
as high and only provide best effort service to the free users so it will maintain the SLA of paid user 
even in high demand. When in the low demand time it gives good service to both the free users as well 
as priority customers.   

Proposed method is a combination of two algorithm one of that is used to schedule the user 
request or task depend up on its priority without violating the SLA. Another one will automatically 
scale the cloud resource depend up on the request dynamically and more efficiently to get high demand 

Aru
Typewriter
 2455-5797

Aru
Typewriter

Aru
Typewriter



ISSN:                                 International Journal of Innovative Works in Engineering and Technology (IJIWET) 

 

 

73 [Bala Suthan.V et al., Vol. (1), No. (2): Dec 2015] 

satisfaction ratio. This is the ratio between the number of request or task that execute without violating 
the SLA to the total number of request or task submitted by users. This algorithm supports green 
computing by adaptively place the application instance along the running server so as to reduce the 
number of server in use and put the ideal sever in to sleep mode to reduce the energy. We construct this 
scaling problem as the Class Constrained Bin Packing problem as mention in [1].Here each class 
represent as the task or user request and Bin represent as the Server. Here the solution is to filling the 
bin with the class but only after filling a current bin completely we can move to another. Here the 
problem is solved by using the proposed modified Semi online algorithm proposed in this paper. This 
method encapsulate each application inside a separate VM (Virtual Machine) to get fault tolerance it 
also follow fast restart techniques based on virtual machine suspend and resume to reduce the 
application start up time. 

Rest of the paper is organized as follows section 2 present the Related Work. System 
Architecture is presented in section 3, section 4 consist of Algorithm. Section 5 and 6 consist of 
Simulation Result and Conclusion.  

 

II. RELATED WORKS 

Many previous works have been done by many researchers for providing efficient cloud computing 
services most of them are concentrate particularly on single parameter like to reduce energy usage or 
optimum scheduling algorithm for increasing performance or priority based scheduling. In [1] authors 
presented the method that concentrate on both demand satisfaction and Energy efficiency and it is used 
for internet application we take some concepts from this paper and optimize or modified the algorithms 
in this paper to provide very high demand satisfaction ratio. This paper concentrate on most important 
three parameters for cloud performance such as priority based Scheduling, Dynamic scaling to increase 
demand satisfaction ratio, and also concentrate on energy saving.  

In [2] the authors presented a model that can monitor the QoS oriented cloud computing 
resource availability on cloud which help us to estimate the current situation or resource availability to 
full fill particular QoS. In [3] authors developed a method that schedule the task depend up on its priority 
using modified waiting queen model. In this paper the scaling problem is modelled as the Class 
Constrained Bin packing Problem (CCBP) as presented in [1],[4][6]. Class Constrained Multiple 
Knapsack problems (CCMK) is used in [7],[8] it aims to maximize the total number of packed item but 
un like Class Constrained Bin Packing (CCBP) it will not reduce the number of knapsack in used that 
is it does not minimize the energy use. To solve this Class Constrained Bin Packing problem various 
methods or algorithms have been proposed.  

In [5] authors proposed a tight bound algorithm but it can’t rearrange the packed item in the class. Many 

offline algorithm are available but it does not consider the item departure when colour set become empty 

due to item departure and if it is not repacked then it definitely leads to performance degradation.  Also 

many strict online algorithm are available but it can’t move the task once it was packed. It has been 

shown in [9] that existing colour set algorithm have poor performance when there is frequent item 

departure this cannot be used in cloud computing. The application placement in enterprise environment 

is shown in [9],[10]. In [11],[12],[13] authors concentrate on resource provisioning on web farm some 

allocate task  in granularity of full server it leads to poor resource utilization. [13] This paper do not 

consider the practical limit on the number of application a server can run simultaneously. In [14] authors 

proposed two greedy algorithms, to generate the static allocation: the cloud list scheduling (CLS) and 

the cloud min-min scheduling (CMMS). In [15] author presented a view of various open source cloud 

system, It provide the way, how to use open source cloud systems. Various scheduling algorithms and 

method depend on various metrics such as Latency, time and cost for cloud and web services are 

Aru
Typewriter
 2455-5797

Aru
Typewriter



ISSN:                                 International Journal of Innovative Works in Engineering and Technology (IJIWET) 

 

 

74 [Bala Suthan.V et al., Vol. (1), No. (2): Dec 2015] 

proposed in this papers [17], [21], [22], [23]. In [18] authors proposed a Greedy Resource allocation 

algorithm this will reduce the number of server in use so as to reduce the energy usage. 

 

 

III. SYSTEM ARCHITECTURE 
 

 
Figure 1. System Architecture 

 
Figure 1. Shows the architecture of the proposed system. The system architecture shows the three 

segments, Application Scheduler Plugin. Priority Based Scheduler Plugin and Infrastructure consist of 
servers. This priority based scheduler is the modified version of layer 7 switch which consist of extra 
priority based scheduler block. Infrastructure consist of n number of servers depend on the size of the 
cloud data centre. Request from the client is directly send to the Priority based scheduler that runs the 
priority scheduling algorithm that schedule or arrange the tasks depend on the priority information 
available on it. It also send the number of application request to the request counter in the application 
info. Then the application scheduler plugin is invoked.  

This application scheduler plugin consist of Usher CTRL [20] that dynamically maintain the 
running instance, also monitor the resource availability of each server and its current running 
application. The monitor plugin get all the require information from the Usher CTRL and Current 
request rate from the application info and send it to the colour set adjustment plugin. This colour set 
adjustment plugin run the proposed modified colorset algorithm to configure the application placement 
change. The new configuration is then send to the priority scheduler plugin where dispatcher used this 
new configuration and distribute the task along the server. The application scheduler plugin is used to 
increase the demand satisfaction ratio as well as to efficiently use the resource available. Each 
application is embedded in to separate virtual machine [16] to reduce the fault during run time. 

LNM in each node and layer 7 switch with Priority scheduler collect the application placement 
information, resource usage of each instance, and total request number of each application. This 
information are send to the Usher central controller above which the application scheduler runs.  

Application scheduler is invoked only when it is needed to make the following decision.  

Application Placement: For each application it allocate a set of server to run its instance 

Load Distribution: For each application it predict the future demand depend up on the current request 
rate and past statistics and then decide how to distribute this load among the running servers. 

Aru
Typewriter

Aru
Typewriter
 2455-5797

Aru
Typewriter



ISSN:                                 International Journal of Innovative Works in Engineering and Technology (IJIWET) 

 

 

75 [Bala Suthan.V et al., Vol. (1), No. (2): Dec 2015] 

This decisions are forwarded to the dispatcher in layer 7 switch block and to the LVM in the 
local node for execution. The command to the LVM consist of 

 Command to standby or wakeup 

 Command to start new application or stop running application 

 Command to allocate local resource along the application 

LNM at the local node adjust the local resource allocation among the VM(Virtual Machines).  Here 
Xen Hypervisor is used It can change the CPU allocation among the VMs by adjusting the weights in 
the CPU schedulers [19]. Self-ballooning techniques are used to allocate memory among the VM. This 
will allocate the memory dynamically among the VM depend up on the need so it reduce the unwanted 
usage of memory resource. The decision interval of the scheduler depend on application demand change 
and on frequent placement change. 

 

V. DETAILS OF ALGORITHM 

Here in this paper two algorithms are proposed one is to schedule or arrange the application based 
on its priority and the second algorithm is for resource scalability to provide high demand satisfaction 
ratio. 

Priority scheduling algorithm: 

 In this method the request from each user is consider to having three metrics, Priority (For free 

user it is 0 and for priority user or paid user it is 1), Arrived time (This is the time when application 

request reached the server), Living time (Max time up to which request is valid, exceeding this will 

break the SLA). Normally this added when the application request reached the datacentre depend on 

the user priority. Then depend on this three metrics the scheduling algorithm will schedule the task or 

application request adaptively. 

Algorithm_1 
Input = user request with SLA (Priority, Arrived time, living time ); 
Dead time= living time-Arrived time; 
Arrange Task ascendingly depend on dead time; 
Add to Entry queue; 
x=0; 
C=Average Execution time of tasks; 
Monitor A=Available Virtual Machine (from usher CTRL); 
If (A is sufficient for current Request) 
 send : request to dispatcher 
 Result=success; 
 call alg 2; 
Else  
        1: update (current request rate in app info) 
 run scaling algorithm; 
 if (scaling algorithm= success); 
 send : request to dispatcher; 
 result=success; 
 call alg_2; 
 else if(scaling algorithm= failed); 
 if (free user request in queue ); 
 x=x+10; 
 move :x% of free user request to temp queue; 
 goto 1: 
 else : 

Aru
Typewriter
 2455-5797

Aru
Typewriter



ISSN:                                 International Journal of Innovative Works in Engineering and Technology (IJIWET) 

 

 

76 [Bala Suthan.V et al., Vol. (1), No. (2): Dec 2015] 

 result=failed; 
 wait for C time; 
 Remove Dead task from Entry queue; 
 Goto 1; 
End 
 
Algorithm_2 
 
If (free request in queue ) 
Remove dead task return failed; 
Arrange remaining task in ascending order with dead time; 
X=0; 
2: Monitor A =Available Virtual Machine 
If(A<=80% total VM) 
X=x+10; 
Update info list with X% free user request; 
Run scaling algorithm 
If (scaling algorithm =success) 
 move X% free request to dispatcher; 
 result = success; 
 goto 2: 
else  
remove updated free instance from infolist 
Call alg_1 
Goto 2: 
Else  
Call alg_1; 
end 
 
Auto Scaling Algorithm: 

 This algorithm is used to automatically scale the resource allocated to the current process. This 

is done by using the following step. Here this problem is formed as a class constrained Bin Packing 

problem and solved using the proposed Modified Semi online Colour set Algorithm. Here each Bin 

denote the Server or host in the data centre and class denote the application instances. Colourset is the 

set of instance from same application. 

Initialization 

i) Sort the list of unfilled colour set in descending order 

ii) Use greedy algorithm to add the new colour into sets according to the position 

iii) If there are still new colours left after filling up all unfilled sets then partition the remaining 

new colours into additional colour set using greedy algorithm 

iv) If we run out of new colour before filing up all but the last unfilled go to next step 

v) Consolidate _unfilled_set Procedure 

vi) Sort the list of unfilled colour set in descending order  

vii) Use the last set in the list to fill the first set in the list 

viii) Repeate the previous  step until there is only one unfilled set left in the list 

ix) Procedure fill (s1,s2) 

x) Sort the list of colors in s1 in ascending order of their number of items. 

xi) Add the first colour in the list into s2 

xii) Repeate above steps until either s1 become empty or s2 become full. 

xiii) If free s>0 return success;  

xiv) If free s<0 return fail; 

Aru
Typewriter
 2455-5797

Aru
Typewriter



ISSN:                                 International Journal of Innovative Works in Engineering and Technology (IJIWET) 

 

 

77 [Bala Suthan.V et al., Vol. (1), No. (2): Dec 2015] 

New Item Arrival 

If new item arrived  

i) Search unfilled bin for current application 

ii) If (unfilld bin has application running) 

iii) Send item to bin 

iv) Else(search for bin with current app) 

v) Move an item to unfilled bin from founded bin 

vi) Repack the current item in free space 

Item Leave 

If item leave 

i. If (unfilled bin has application run in current bin)  

ii. Repack the empty space with item from unfilled bin 

iii. Else repack the item between the bin  

iv. If unfilled bin become empty made it to sleep 

 

VI.  RESULTS AND ANALYSIS 
Performance of the proposed system is evaluated using the Simulation tool. The performance of the 

proposed system is analysed using two metrics. One demand satisfaction ration another is power we 

evaluate the result for this two metrics and compare that with the existing system. Here the power is 

calculated by monitoring the number of servers in use for corresponding demand power utilization is 

directly proportional to number of server in use. 

 

 
Figure 2. Demand satisfaction ratio of existing system 

 

 Figure 2. Show the demand satisfaction ratio of the existing system [1]. Here the number of server 

in the data centre is kept constant and the demand is increased from 1% to 100% and corresponding 

demand satisfaction ratio is measured. 

Aru
Typewriter
 2455-5797



ISSN:                                 International Journal of Innovative Works in Engineering and Technology (IJIWET) 

 

 

78 [Bala Suthan.V et al., Vol. (1), No. (2): Dec 2015] 

 
 

Figure 3. No. of APM vs Demand of Existing system 

 

Figure 3. Shows the power utilization of the existing system [1]. That is it gives no. of APM (Active 

Physical Machine) for corresponding Demand ratio here C denote the no of different class that runs on 

the data centre. 

 

 
Figure 4. Demand satisfaction ratio of Proposed system. 

 

Figure 3. Shows the demand satisfication ratio of the proposed system. It gives the demand 

satisfaction ratio of priority users as well as free user separately. Simulation is done by keeping the 

number of host as the constant and the demand is increased from 1% to 200% with different ratio of 

free user request from 0% to 80% and corresponding demand satisfaction ratio is noted. 

 

Aru
Typewriter
 2455-5797

Aru
Typewriter



ISSN:                                 International Journal of Innovative Works in Engineering and Technology (IJIWET) 

 

 

79 [Bala Suthan.V et al., Vol. (1), No. (2): Dec 2015] 

 
 

Figure 5. Demand Satisfaction Ratio Graph 

 

Figure 5. Gives the graphical representation of the demand satisfaction ratio obtain during the 

simulation. This result clearly denote that up to the 80% of total demand both free user as well as the 

priority user get nearly 100% demand satisfaction as the total demand go beyond 100% we maintain 

the demand satisfaction ratio of the priority user by compromising on demand satisfaction ratio of free 

users. Here depend on the contribution of the priority user request the demand satisfaction free user get 

varied if priority user have more request then it automatically reduce the demand satisfaction ratio of 

free user. 

 
Figure 6. Power utilization of proposed system 

 

Figure 6. Shows the number of APM (Active Physical Machine) versus Demand. Here we calculate 

the power indirectly by monitoring the number of APM corresponding to the total demand. This graph 

is Identical to the existing system power utilization, this shows that the proposed system also support 

green computing this is the added advantage to the proposed system. 

 

 

 

0

20

40

60

80

100

0% 50% 100% 150% 200%

D
em

an
d

 S
at

if
ac

ti
o

n
R

at
io

Total Demand

Demand Satisfaction

80% free user req 60% free user req

40% free user req 20% free user req

0%free user req Avg free user DSR

0

100

200

300

400

500

600

700

800

900

1000

0 0.5 1

A
P

M

Demand

Power Utilization

Aru
Typewriter
 2455-5797



ISSN:                                 International Journal of Innovative Works in Engineering and Technology (IJIWET) 

 

 

80 [Bala Suthan.V et al., Vol. (1), No. (2): Dec 2015] 

VII. CONCLUSION 

In this paper we present the system that will increase and maintain the demand satisfaction ratio of 
the priority uses at the same time it serve good for the free user in normal situation. This will reduce the 
cloud service provider cost of running for free user as well as give high demand satisfaction ratio for 
both priority and free users. The performance evaluation of our system is measure by the simulation 
and the simulation results shows that ours system is more reliable and increase overall performance of 
cloud while reducing the cost of cloud service providers as well as it reduce the energy consumption 
and support green computing. 

REFERENCES 

1. Zhen xiao, senior member, IEEE, qi chen, and haipeng luo “Automatic scaling of internet applications for 

cloud computing services” IEEE transactions on computers, vol. 63, no. 5, may 2014 

2.  WANG En Dong WU Nan “QoS-oriented Monitoring Model of Cloud Computing Resources Availability”  

International Conference on Computational and Information Sciences 2013. 

3. Pawar, C.S., Rajnikanth B. Wagh “Priority based dynamic resource allocation in Cloud computing with 

modified waiting queue” International Conference on Intelligent Systems and Signal Processing (ISSP) 2013. 

4. L. Epstein, C. Imreh, and A. Levin, “class constrained bin packing revisited,” theor. Comput. Sci., Vol. 411, 

no. 34–36, pp. 3073–3089,2010.  

5. H. Shachnai and T. Tamir, “tight bounds for online classconstrained packing,” theory. Comput. Sci., Vol. 321, 

no. 1, pp. 103–123, 2004. 

6. E. C. Xavier and F. K. Miyazawa, “The class constrained bin packing problem with applications to video-on-

demand,” Theor. Comput. Sci., vol. 393, no. 1–3, pp. 240–259, 2008. 

7. H. Shachnai and T. Tamir, “On two class-constrained versions of the multiple knapsack problem,” 

Algorithmica, vol. 29, no. 3, pp. 442–467, 2001. 

8. H. Shachnai and T. Tamir, “On two class-constrained versions of the multiple knapsack problem,” 

Algorithmica, vol. 29, no. 3, pp. 442–467, 2001. 

9. A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M. Steinder, M. Sviridenko, and A. Tantawi, “Dynamic 

placement for clustered web applications,” in Proc. Int. World Wide Web Conf. (WWW’06), May 2006, pp. 

595–604. 

10. J. Famaey, W. D. Cock, T. Wauters, F. D. Turck, B. Dhoedt, and P.Demeester, “A latency-aware algorithm 

for dynamic service placement in large-scale overlays,” in Proc. IFIP/IEEE Int. Conf. Symp. Integrat. Netw. 

Manage. (IM’09), 2009, pp. 414–421. 

11. B. Urgaonkar, P. Shenoy, and T. Roscoe, “Resource overbooking and application profiling in shared hosting 

platforms,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 239–254, 2002. 

12. M. Aron, P. Druschel, and W. Zwaenepoel, “Cluster reserves: A mechanism for resource management in 

cluster-based network servers,” SIGMETRICS Perform. Eval. Rev., vol. 28, no. 1, pp. 90–101, 2000.  

13. J. L. Wolf and P. S. Yu, “On balancing the load in a clustered web farm,” ACM Trans. Internet Technol., vol. 

1, no. 2, pp. 231–261, 2001. 

14. Jiayin Li, Meikang Qiu, Jian-Wei Niu, Yu Chen, Zhong Ming “Adaptive Resource Allocation for Preemptable 

Jobs in Cloud Systems,” in 10th International Conference on Intelligent System Design and Application, Jan. 

2011, pp. 31-36. 

15. E. Caron, L. Rodero-merino, F. Desprez, and A.Muresan, “autoscaling,load balancing and monitoring in 

commercial and open source clouds,” INRIA, rapport de recherche RR-7857, feb. 2012. 

16. J. Zhu, Z. Jiang, Z. Xiao, and X. Li, “optimizing the performance of virtual machine synchronization for fault 

tolerance,” IEEE trans. Comput., Vol. 60, no. 12, pp. 1718–1729, dec. 2011 

17. J. Famaey, W. D. Cock, T. Wauters, F. D. Turck, B. Dhoedt, and P. Demeester, “A latency-aware algorithm 

for dynamic service placement in large-scale overlays,” in proc. IFIP/IEEE int. Conf. Symp. Integrat. Netw. 

Manage. (IM’09), 2009, pp. 414–421. 

18. J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P. Doyle, “managing  energy and 

server resources in hosting centers,” in proc. ACM  symp. Oper. Syst.  Princ. (SOSP’01), oct. 2001,  

pp. 103–116   

Aru
Typewriter
 2455-5797

Aru
Typewriter



ISSN:                                 International Journal of Innovative Works in Engineering and Technology (IJIWET) 

 

 

81 [Bala Suthan.V et al., Vol. (1), No. (2): Dec 2015] 

19. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt,  and A. 

Warfield, “xen and the art of virtualization,” in proc. ACM symp. Oper. Syst.  Princ. (SOSP’03), oct. 

2003, pp. 164–177. 

20. M. Mcnett, D. Gupta, A. Vahdat, and G. M. Voelker, “usher: an extensible framework  for managing 

clusters of virtual machines,” in proc. Large install. Syst. Admin. Conf.  (LISA’07), nov. 2007, pp. 1–15. 

21. S. K. Garg, R. Buyya, and H. J. Siegel, “Time and cost trade off management for scheduling parallel 

applications on utility grids,” Future Generation. Computer System, 26(8):1344–1355, 2010. 

22. 12 S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A particle swarm optimization-based heuristic for scheduling 

workflow applications in cloud computing environments,” in AINA ’10: Proceedings of the 2010, 24th IEEE 

International Conference on Advanced Information Networking and Applications, pages 400–407, 

Washington, DC, USA, 2010, IEEE Computer Society. 

23.  M. Salehi and R. Buyya, “Adapting market-oriented scheduling policies for cloud computing,” In Algorithms 

and Architectures for Parallel Processing, volume 6081 of Lecture Notes in Computer Science, pages 351–

362. Springer Berlin / Heidelberg, 2010. 

 

 

 

Aru
Typewriter
 2455-5797

Aru
Typewriter




